Database Patterns for Microservices

Best practices and patterns for managing data in FlowMart microservices

This guide outlines the database patterns and best practices for managing data in FlowMart’s microservices architecture.

Database Per Service Pattern

At FlowMart, we follow the Database Per Service pattern as our primary data management strategy:

  • Definition: Each microservice owns and manages its database exclusively
  • Access Pattern: Only the service that owns the database can perform direct read/write operations
  • Purpose: Ensures loose coupling, independent scaling, and domain isolation

Database Per Service Diagram

Why This Pattern?

  1. Service Independence: Services can be developed, deployed, and scaled independently
  2. Technology Freedom: Teams can choose the most appropriate database technology for their service needs
  3. Resilience: Database failures are isolated to individual services
  4. Security: Clear data ownership boundaries limit the blast radius of security incidents
  5. Performance: Database schemas and indexes can be optimized for specific service requirements

Supported Database Technologies

FlowMart supports the following database technologies for microservices:

Database TypeTechnologyBest ForSupport Level
DocumentMongoDBFlexible schemas, rapid developmentPrimary
RelationalPostgreSQLComplex transactions, structured dataPrimary
Key-ValueRedisCaching, session management, rate limitingPrimary
SearchElasticsearchFull-text search, analyticsSecondary
GraphNeptuneRelationship-heavy domains (e.g., recommendations)Secondary
Time-SeriesInfluxDBMetrics, monitoring dataSecondary

Primary: Fully supported with managed services, infrastructure modules, and dedicated support

Secondary: Available but with limited tooling and support

Data Modeling Principles

1. Model Around Bounded Contexts

  • Define clear domain boundaries based on business capabilities
  • Avoid modeling your database around UI needs
  • Focus on the core domain model within each service

2. Design for Access Patterns

  • Consider query patterns when designing the schema
  • Optimize for the most frequent queries
  • Plan for future data growth and access needs

3. Denormalization When Appropriate

  • Strategic denormalization is often necessary in distributed systems
  • Consider composite keys for efficient lookups
  • Use materialized views for read-heavy scenarios

Example: Product Service Data Model (MongoDB)

// Product Collection
{
"_id": ObjectId("5f8d0f3e1c9d440000c9a1f5"),
"name": "Ultra HD Smart TV",
"description": "55-inch Ultra HD Smart TV with voice control",
"sku": "TV-55UHD-2023",
"price": {
"amount": 699.99,
"currency": "USD"
},
"category": "electronics",
"subcategory": "televisions",
"attributes": {
"brand": "TechVision",
"model": "UHD-55X",
"screenSize": "55",
"resolution": "3840x2160",
"smartFeatures": true,
"voiceControl": true,
"energyRating": "A+"
},
"images": [
{
"url": "https://storage.flowmart.com/products/tv-55uhd-2023-main.jpg",
"isPrimary": true,
"alt": "TechVision 55-inch Smart TV front view"
},
{
"url": "https://storage.flowmart.com/products/tv-55uhd-2023-side.jpg",
"isPrimary": false,
"alt": "TechVision 55-inch Smart TV side view"
}
],
"inventory": {
"inStock": 127,
"reserved": 13,
"available": 114,
"lowStockThreshold": 25,
"lastUpdated": ISODate("2023-09-15T14:23:45.000Z")
},
"status": "active",
"createdAt": ISODate("2023-05-01T09:30:00.000Z"),
"updatedAt": ISODate("2023-09-15T14:23:45.000Z")
}
// Review Collection
{
"_id": ObjectId("5f8d0f3e1c9d440000c9a1f9"),
"productId": ObjectId("5f8d0f3e1c9d440000c9a1f5"),
"customerId": "cust-12345",
"rating": 4.5,
"title": "Great TV for the price",
"content": "The picture quality is excellent and setup was easy...",
"verified": true,
"helpfulVotes": 27,
"createdAt": ISODate("2023-06-15T18:22:10.000Z")
}

Example: Order Service Data Model (PostgreSQL)

-- Orders Table
CREATE TABLE orders (
id UUID PRIMARY KEY,
customer_id VARCHAR(255) NOT NULL,
order_number VARCHAR(50) NOT NULL UNIQUE,
status VARCHAR(50) NOT NULL,
total_amount DECIMAL(10, 2) NOT NULL,
currency VARCHAR(3) NOT NULL,
shipping_address_id UUID NOT NULL,
billing_address_id UUID NOT NULL,
payment_method_id UUID,
created_at TIMESTAMP WITH TIME ZONE DEFAULT NOW(),
updated_at TIMESTAMP WITH TIME ZONE DEFAULT NOW()
);
-- Order Items Table
CREATE TABLE order_items (
id UUID PRIMARY KEY,
order_id UUID NOT NULL REFERENCES orders(id),
product_id VARCHAR(255) NOT NULL,
product_sku VARCHAR(100) NOT NULL,
product_name VARCHAR(255) NOT NULL,
quantity INTEGER NOT NULL,
unit_price DECIMAL(10, 2) NOT NULL,
subtotal DECIMAL(10, 2) NOT NULL,
created_at TIMESTAMP WITH TIME ZONE DEFAULT NOW()
);
-- Indexes
CREATE INDEX idx_orders_customer_id ON orders(customer_id);
CREATE INDEX idx_orders_status ON orders(status);
CREATE INDEX idx_order_items_order_id ON order_items(order_id);
CREATE INDEX idx_order_items_product_id ON order_items(product_id);

Data Consistency Patterns

1. Eventual Consistency with Event-Driven Updates

At FlowMart, we embrace eventual consistency for most inter-service data coordination:

Loading graph...

2. Saga Pattern for Distributed Transactions

For operations that span multiple services and require transactional semantics:

Loading graph...

3. CQRS (Command Query Responsibility Segregation)

For services with complex read patterns or high read-to-write ratios:

┌───────────────┐ Commands ┌───────────────┐
│ │ ──────────────▶ │ │
│ API Layer │ │ Command Model │
│ │ ◀────────────── │ │
└───────────────┘ └───────────────┘
│ │
│ │
│ ▼
│ ┌───────────────┐
│ │ │
│ │ Event Store │
│ │ │
│ └───────────────┘
│ │
│ │
▼ ▼
┌───────────────┐ ┌───────────────┐
│ │ │ │
│ Query Model │ ◀────────────── │ Event Handler │
│ │ │ │
└───────────────┘ └───────────────┘

Data Migration Patterns

1. Schema Evolution

For incremental changes to a service’s schema:

  • Add new fields with default values
  • Make changes backward compatible
  • Use database migration tools (e.g., Flyway, Liquibase, MongoDB migrations)

Example migration script (Flyway):

-- V2023.09.15.1__Add_Order_Tracking.sql
ALTER TABLE orders ADD COLUMN tracking_number VARCHAR(100);
ALTER TABLE orders ADD COLUMN shipping_carrier VARCHAR(50);

2. Expand-Contract Pattern (Parallel Change)

For significant schema changes:

  1. Expand: Add new fields/tables while maintaining old ones
  2. Migrate: Copy/transform data from old to new structure
  3. Contract: Remove old fields/tables after migration is complete

3. Service Decomposition

When splitting a monolithic database:

  1. Identify bounded contexts
  2. Create new service databases
  3. Implement dual-write mechanism temporarily
  4. Migrate historical data
  5. Switch reads to the new database
  6. Remove old tables after migration completes

Database Access Patterns

Repository Pattern

Our standard approach for database access:

// Product Repository Interface
export interface ProductRepository {
findById(id: string): Promise<Product | null>;
findByCategory(category: string, limit?: number, offset?: number): Promise<Product[]>;
findByQuery(query: ProductQuery): Promise<Product[]>;
save(product: Product): Promise<Product>;
update(id: string, updates: Partial<Product>): Promise<Product | null>;
delete(id: string): Promise<boolean>;
}
// MongoDB Implementation
export class MongoProductRepository implements ProductRepository {
constructor(private readonly db: Db) {}
async findById(id: string): Promise<Product | null> {
const result = await this.db.collection('products').findOne({ _id: new ObjectId(id) });
return result ? this.mapToProduct(result) : null;
}
// Additional implementation methods...
}
// PostgreSQL Implementation
export class PostgresProductRepository implements ProductRepository {
constructor(private readonly pool: Pool) {}
async findById(id: string): Promise<Product | null> {
const result = await this.pool.query(
'SELECT * FROM products WHERE id = $1',
[id]
);
return result.rows.length ? this.mapToProduct(result.rows[0]) : null;
}
// Additional implementation methods...
}

Connection Management

Connection Pooling

// MongoDB Connection Pool (Node.js)
const { MongoClient } = require('mongodb');
class MongoDbClient {
constructor(config) {
this.client = new MongoClient(config.uri, {
maxPoolSize: config.maxPoolSize || 10,
minPoolSize: config.minPoolSize || 5,
maxIdleTimeMS: config.maxIdleTimeMS || 30000,
connectTimeoutMS: config.connectTimeoutMS || 5000
});
}
async connect() {
await this.client.connect();
this.db = this.client.db(config.dbName);
console.log('Connected to MongoDB');
return this.db;
}
async disconnect() {
await this.client.close();
console.log('Disconnected from MongoDB');
}
}

Health Checks

// Database Health Check (TypeScript)
export class DatabaseHealthCheck {
constructor(private readonly dbClient: DbClient) {}
async check(): Promise<HealthStatus> {
try {
const startTime = Date.now();
await this.dbClient.ping();
const responseTime = Date.now() - startTime;
return {
status: 'UP',
responseTime,
details: {
database: this.dbClient.getDatabaseName(),
connections: await this.dbClient.getConnectionStats()
}
};
} catch (error) {
return {
status: 'DOWN',
error: error.message,
details: {
database: this.dbClient.getDatabaseName()
}
};
}
}
}

Database Security Practices

  1. Use IAM Roles/Service Accounts: Avoid hardcoded credentials
  2. Encryption: Enable at-rest and in-transit encryption
  3. No Direct Public Access: Databases should never be directly exposed to the internet
  4. Least Privilege: Grant minimal required permissions to service accounts
  5. Data Classification: Tag data according to sensitivity
  6. Audit Logging: Enable database auditing for sensitive operations
  7. Regular Backups: Implement automated backup strategies
  8. Secure Connection Strings: Store connection information in secure vaults

Technology-Specific Guidelines

MongoDB Best Practices

  • Use document validation for schema enforcement
  • Create indexes for frequent query patterns
  • Limit document size (< 16MB)
  • Use aggregation pipelines for complex queries
  • Implement TTL indexes for expiring data

PostgreSQL Best Practices

  • Use connection pooling
  • Implement database partitioning for large tables
  • Create appropriate indexes based on query patterns
  • Use prepared statements to prevent SQL injection
  • Implement row-level security for multi-tenant data

Redis Best Practices

  • Set appropriate key expiration times
  • Use Redis data structures (not just key-value)
  • Implement Redis Cluster for high availability
  • Monitor memory usage
  • Use Redis for its strengths: caching, rate limiting, session storage

Infrastructure as Code for Databases

FlowMart provides Terraform modules for common database setups:

# MongoDB Atlas Cluster
module "mongodb_cluster" {
source = "git::https://gitlab.flowmart.com/platform/terraform-modules//mongodb-atlas"
project_id = var.atlas_project_id
cluster_name = "${var.service_name}-${var.environment}"
environment = var.environment
instance_size = var.environment == "production" ? "M10" : "M0"
region = var.region
backup_enabled = var.environment == "production" ? true : false
teams = {
owner = "team-product",
developer = "team-product-dev"
}
tags = {
Service = var.service_name
Environment = var.environment
ManagedBy = "terraform"
}
}
# PostgreSQL RDS Instance
module "postgres_db" {
source = "git::https://gitlab.flowmart.com/platform/terraform-modules//aws-rds-postgres"
identifier = "${var.service_name}-${var.environment}"
allocated_storage = var.environment == "production" ? 100 : 20
storage_type = "gp2"
engine_version = "13.4"
instance_class = var.environment == "production" ? "db.m5.large" : "db.t3.small"
database_name = replace(var.service_name, "-", "_")
vpc_id = var.vpc_id
subnet_ids = var.database_subnet_ids
multi_az = var.environment == "production" ? true : false
deletion_protection = var.environment == "production" ? true : false
backup_retention_period = var.environment == "production" ? 7 : 1
tags = {
Service = var.service_name
Environment = var.environment
ManagedBy = "terraform"
}
}

Data Governance

Practices for Maintaining Data Integrity

  1. Schema Registry: Register and validate event schemas
  2. Data Catalogs: Document available data and owners
  3. Data Lineage: Track how data flows between services
  4. Data Quality Checks: Implement validation and integrity checks
  5. Master Data Management: Establish source-of-truth services

GDPR and Compliance

  1. Data Minimization: Collect only necessary data
  2. Right to Erasure: Implement mechanisms to delete customer data
  3. Data Portability: Support data export in common formats
  4. Consent Management: Track and honor user consent
  5. Purpose Limitation: Use data only for its intended purpose
  • Books:

    • “Database Internals” by Alex Petrov
    • “Designing Data-Intensive Applications” by Martin Kleppmann
  • Courses:

    • MongoDB University
    • PostgreSQL Administration by EnterpriseDB
  • FlowMart Resources:

    • Internal Database Patterns Playbook
    • Monthly Database Office Hours

Next Steps